If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6v2 = 6 + -2v Solving 6v2 = 6 + -2v Solving for variable 'v'. Reorder the terms: -6 + 2v + 6v2 = 6 + -2v + -6 + 2v Reorder the terms: -6 + 2v + 6v2 = 6 + -6 + -2v + 2v Combine like terms: 6 + -6 = 0 -6 + 2v + 6v2 = 0 + -2v + 2v -6 + 2v + 6v2 = -2v + 2v Combine like terms: -2v + 2v = 0 -6 + 2v + 6v2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-3 + v + 3v2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-3 + v + 3v2)' equal to zero and attempt to solve: Simplifying -3 + v + 3v2 = 0 Solving -3 + v + 3v2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + 0.3333333333v + v2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + 0.3333333333v + 1 + v2 = 0 + 1 Reorder the terms: -1 + 1 + 0.3333333333v + v2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 0.3333333333v + v2 = 0 + 1 0.3333333333v + v2 = 0 + 1 Combine like terms: 0 + 1 = 1 0.3333333333v + v2 = 1 The v term is v. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. 0.3333333333v + 0.25 + v2 = 1 + 0.25 Reorder the terms: 0.25 + 0.3333333333v + v2 = 1 + 0.25 Combine like terms: 1 + 0.25 = 1.25 0.25 + 0.3333333333v + v2 = 1.25 Factor a perfect square on the left side: (v + 0.5)(v + 0.5) = 1.25 Calculate the square root of the right side: 1.118033989 Break this problem into two subproblems by setting (v + 0.5) equal to 1.118033989 and -1.118033989.Subproblem 1
v + 0.5 = 1.118033989 Simplifying v + 0.5 = 1.118033989 Reorder the terms: 0.5 + v = 1.118033989 Solving 0.5 + v = 1.118033989 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + v = 1.118033989 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + v = 1.118033989 + -0.5 v = 1.118033989 + -0.5 Combine like terms: 1.118033989 + -0.5 = 0.618033989 v = 0.618033989 Simplifying v = 0.618033989Subproblem 2
v + 0.5 = -1.118033989 Simplifying v + 0.5 = -1.118033989 Reorder the terms: 0.5 + v = -1.118033989 Solving 0.5 + v = -1.118033989 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + v = -1.118033989 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + v = -1.118033989 + -0.5 v = -1.118033989 + -0.5 Combine like terms: -1.118033989 + -0.5 = -1.618033989 v = -1.618033989 Simplifying v = -1.618033989Solution
The solution to the problem is based on the solutions from the subproblems. v = {0.618033989, -1.618033989}Solution
v = {0.618033989, -1.618033989}
| s^2-8s+7=0 | | x^2-6x+1=12 | | k^2+16=-8k | | 3(x-4)=-3x+18 | | a+15+6a=36 | | c-5/3=2c+2/4 | | f-9/5=-5.6/7 | | Ax+Bx-3=144 | | x^2-17x-138=0 | | X^2-4x-31=x-7 | | 1.8t+4569=5200 | | s^3+6s^2-11s=0 | | 4n^2=20+2n | | 4y=25y^2 | | 3n/4=6/4*4/3 | | 5c+9=24 | | 1.8t+4569=4812 | | 5-2(x-4)=x+7 | | 3.498=-0.53*k | | 150=3xsquared | | 2/3(6x+51)=10+12x | | 3x^3+33x^2+84x=0 | | (x^2)=0 | | -0.96*j=-0.72 | | a^2-14ab+45b^2=0 | | -2(3x+6)+9=-6x+21 | | -0.96*j= | | m^2+18m+17=0 | | 3x-1.8=-3x-1.8 | | 5r-3+5r=17 | | 8*w=75.2 | | 29.50-19.50=m |